Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yao-Cheng Shi

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's
Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.091$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[1-ferrocenyl-3-(2,6-dimethylphenyl)-aminobut-2-en-1-onato]nickel(II)

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FeNO}\right)_{2}\right]$, the $\mathrm{Ni}^{\text {II }}$ ion lies on an inversion center and has a square planar coordination geometry formed by bidentate enaminone ligands. The $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances are 1.928 (2) and 1.850 (2) \AA, respectively.

Comment

Enaminones and their complexes have attracted much attention because of their potential applications in the fields of coordination chemistry and catalysis (Kim et al., 2001). The ferrocenyl enaminone used as a ligand in this work has recently been prepared in our laboratory (Shi et al., 2005). As a part of an ongoing investigation on ferrocenyl enaminone compounds, we have prepared its nickel(II) complex, (I), and determined its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Ni}^{\mathrm{II}}$ cation, located on an inversion center, assumes a squareplanar coordination geometry formed by bidentate enaminone monoanions. The $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances (Table 1) are comparable to those in $\left[\left\{\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeC}_{5} \mathrm{H}_{4}\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NCH}_{2}\right\}_{2} \mathrm{Ni}\right][1.851$ (4) and 1.842 (3) \AA; Shi, Shen et al., 2004] and $\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3^{-}}\right.$ $\left.\mathrm{NC}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{N}(=\mathrm{O}) \mathrm{Ni}\right][1.910$ (4) and $1.832(3) \AA$; Kwiatkowski et al., 1990].

The mean $\mathrm{C}-\mathrm{C}$ bond distance $\left[1.423\right.$ (4) \AA] in the $\mathrm{C}_{5} \mathrm{H}_{4}$ ring is essentially identical to that in the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring [1.412 (5) \AA]. In addition, the average $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{Fe} \cdots \mathrm{Cg}$ distances [2.043 (3) and 1.6459 (4) \AA, respectively] for the $\mathrm{C}_{5} \mathrm{H}_{4}$ ring are identical to the average $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{Fe} \cdots \mathrm{Cg}$

Received 17 March 2005
Accepted 7 April 2005
Online 16 April 2005

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (spheres of arbitrary radius for the H atoms) [symmetry code: (i) $1-x, 1-y, 1-z]$.
distances [2.038 (3) and 1.6464 (4) \AA, respectively] for the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring (Cg is the centroid of the respective five membered ring). The $\mathrm{C}_{5} \mathrm{H}_{4}$ ring is nearly parallel to the coordination plane, with a smaller dihedral angle of $6.53(16)^{\circ}$.
The substituted benzene rings are nearly perpendicular to the coordination plane [dihedral angle $=86.73(14)^{\circ}$], minimizing the steric repulsions between the methyl groups of dimethylphenyl and enaminone.

Experimental

1-Ferrocenyl-3-(2,6-dimethylphenyl)aminobut-2-en-1-one] (L) was synthesized in the manner reported previously (Shi, Yang et al., 2004). $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}, \mathrm{NaOC}_{2} \mathrm{H}_{5}$ and L were mixed in an ethanol solution in 1:2:2 molar ratio. The mixture was refluxed for 24 h to obtain (I). Single crystals of (I) were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / petroleum ether solution; m.p. 485-486 K.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FeNO}\right)_{2}\right]$
$M_{r}=803.22$
Triclinic, $P \overline{1}$
$a=7.165(2) \AA$
$b=9.709(3) \AA$
$c=13.999(5) \AA$
$\alpha=92.878(5)^{\circ}$
$\beta=102.008(4)^{\circ}$
$\gamma=102.174(5)^{\circ}$
$V=926.6(5) \AA^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.802, T_{\text {max }}=0.846$
5299 measured reflections

$Z=1$

$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 931 reflections
$\theta=3.3-26.1^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, orange-yellow
$0.20 \times 0.16 \times 0.12 \mathrm{~mm}$

3697 independent reflections
2983 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-8 \rightarrow 7$
$k=-12 \rightarrow 9$
$l=-17 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0431 P)^{2}\right. \\
& +0.3411 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.091$
$S=1.08$
3697 reflections
235 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Ni1-N1	$1.928(2)$	C10-C11	$1.477(3)$
Ni1-O1	$1.850(2)$	C11-C12	$1.372(4)$
O1-C11	$1.287(3)$	C12-C13	$1.397(4)$
N1-C13	$1.331(3)$	C13-C14	$1.524(4)$
N1-C15	$1.444(3)$		
N1-Ni1-O1	$93.47(8)$	C10-C11-C12	$119.2(2)$
C11-O1-Ni1	$128.62(16)$	C11-C12-C13	$124.9(2)$
C13-N1-Ni1	$124.74(18)$	N1-C13-C12	$123.7(2)$
C15-N1-Ni1	$120.81(16)$	N1-C13-C14	$120.6(2)$
C13-N1-C15	$114.5(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$115.7(2)$

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl groups, $\mathrm{C}-\mathrm{H}=0.98 \AA$ for ferrocenyl ring H atoms and $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ for all other H atoms). They were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ (for methyl) or $1.2 U_{\mathrm{eq}}(\mathrm{C})$. Torsion angles for methyl H atoms were refined from the electron density.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work received partial financial support by Yangzhou University.

References

Bruker (1998). SMART (version 5.051) and SAINT (version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kim. J., Hwang, J. W., Kim, Y., Lee, M. H., Han,Y. \& Do, Y. (2001). J. Organomet. Chem. 620, 1-7.
Kwiatkowski, M., Kwiatkowski, E. \& Olechnowicz, A. (1990). J. Chem. Soc. Dalton Trans. pp. 2497-2502.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Y.-C., Shen, W.-B., Yang, H.-M., Song, H.-B. \& Hu, X.-Y. (2004). Polyhedron, 23, 749-754.
Shi, Y.-C., Sui, C.-X., Song, H.-B. \& Jian, P.-M. (2005). J. Coord. Chem. 58, $363-$ 371.

Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. \& Hu, X.-Y. (2004). Polyhedron, 23, 15-21.

