Received 17 March 2005

Accepted 7 April 2005

Online 16 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yao-Cheng Shi

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.033 wR factor = 0.091 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[1-ferrocenyl-3-(2,6-dimethylphenyl)aminobut-2-en-1-onato]nickel(II)

In the title compound, $[Ni(C_{22}H_{22}FeNO)_2]$, the Ni^{II} ion lies on an inversion center and has a square planar coordination geometry formed by bidentate enaminone ligands. The Ni-Nand Ni-O bond distances are 1.928 (2) and 1.850 (2) Å, respectively.

Comment

Enaminones and their complexes have attracted much attention because of their potential applications in the fields of coordination chemistry and catalysis (Kim *et al.*, 2001). The ferrocenyl enaminone used as a ligand in this work has recently been prepared in our laboratory (Shi *et al.*, 2005). As a part of an ongoing investigation on ferrocenyl enaminone compounds, we have prepared its nickel(II) complex, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The Ni^{II} cation, located on an inversion center, assumes a squareplanar coordination geometry formed by bidentate enaminone monoanions. The Ni–N and Ni–O bond distances (Table 1) are comparable to those in [{C₅H₅FeC₅H₄. C(O)CH=C(CH₃)NCH₂]₂Ni] [1.851 (4) and 1.842 (3) Å; Shi, Shen *et al.*, 2004] and [CH₃C(O)CH=C(CH₃)N(CH₂)₃-NC(CH₃)=C(CH₃CO)N(=O)Ni] [1.910 (4) and 1.832 (3) Å; Kwiatkowski *et al.*, 1990].

The mean C–C bond distance [1.423 (4) Å] in the C₅H₄ ring is essentially identical to that in the C₅H₅ ring [1.412 (5) Å]. In addition, the average Fe–C and Fe \cdots Cg distances [2.043 (3) and 1.6459 (4) Å, respectively] for the C₅H₄ ring are identical to the average Fe–C and Fe \cdots Cg

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (spheres of arbitrary radius for the H atoms) [symmetry code: (i) 1 - x, 1 - y, 1 - z].

distances [2.038 (3) and 1.6464 (4) Å, respectively] for the C_5H_5 ring (*Cg* is the centroid of the respective five membered ring). The C_5H_4 ring is nearly parallel to the coordination plane, with a smaller dihedral angle of 6.53 (16)°.

The substituted benzene rings are nearly perpendicular to the coordination plane [dihedral angle = $86.73 (14)^{\circ}$], minimizing the steric repulsions between the methyl groups of dimethylphenyl and enaminone.

Experimental

1-Ferrocenyl-3-(2,6-dimethylphenyl)aminobut-2-en-1-one] (*L*) was synthesized in the manner reported previously (Shi, Yang *et al.*, 2004). Ni(CH₃COO)₂, NaOC₂H₅ and *L* were mixed in an ethanol solution in 1:2:2 molar ratio. The mixture was refluxed for 24 h to obtain (I). Single crystals of (I) were obtained by recrystallization from CH₂Cl₂/ petroleum ether solution; m.p. 485–486 K.

Crystal data

$[Ni(C_{22}H_{22}FeNO)_2]$	Z = 1
$M_r = 803.22$	$D_x = 1.439 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.165 (2) Å	Cell parameters from 931
b = 9.709 (3) Å	reflections
c = 13.999(5) Å	$\theta = 3.3 - 26.1^{\circ}$
$\alpha = 92.878(5)^{\circ}$	$\mu = 1.32 \text{ mm}^{-1}$
$\beta = 102.008 \ (4)^{\circ}$	T = 293 K
$\gamma = 102.174(5)^{\circ}$	Block, orange-yellow
V = 926.6 (5) Å ³	$0.20 \times 0.16 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD area-	3697 independent reflections
detector diffractometer	2983 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 7$
$T_{\min} = 0.802, T_{\max} = 0.846$	$k = -12 \rightarrow 9$
5299 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.3411P]
$vR(F^2) = 0.091$	where $P = (F_o^2 + 2F_c^2)/3$
5 = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
697 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1Selected geometric parameters (Å, °).

Ni1-N1	1.928 (2)	C10-C11	1.477 (3)
Ni1-O1	1.850 (2)	C11-C12	1.372 (4)
O1-C11	1.287 (3)	C12-C13	1.397 (4)
N1-C13	1.331 (3)	C13-C14	1.524 (4)
N1-C15	1.444 (3)		
N1-Ni1-O1	93.47 (8)	C10-C11-C12	119.2 (2)
C11-O1-Ni1	128.62 (16)	C11-C12-C13	124.9 (2)
C13-N1-Ni1	124.74 (18)	N1-C13-C12	123.7 (2)
C15-N1-Ni1	120.81 (16)	N1-C13-C14	120.6 (2)
C13-N1-C15	114.5 (2)	C12-C13-C14	115.7 (2)

H atoms were placed in calculated positions (C-H = 0.96 Å for methyl groups, C-H = 0.98 Å for ferrocenyl ring H atoms and C-H = 0.93 Å for all other H atoms). They were refined as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$ (for methyl) or $1.2U_{eq}(C)$. Torsion angles for methyl H atoms were refined from the electron density.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work received partial financial support by Yangzhou University.

References

- Bruker (1998). *SMART* (version 5.051) and *SAINT* (version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kim. J., Hwang, J. W., Kim, Y., Lee, M. H., Han, Y. & Do, Y. (2001). J. Organomet. Chem. 620, 1–7.
- Kwiatkowski, M., Kwiatkowski, E. & Olechnowicz, A. (1990). J. Chem. Soc. Dalton Trans. pp. 2497–2502.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, Y.-C., Shen, W.-B., Yang, H.-M., Song, H.-B. & Hu, X.-Y. (2004). Polyhedron, 23, 749–754.
- Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371.
- Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21.